The Ssn6-Tup1 repressor complex of Saccharomyces cerevisiae is involved in the osmotic induction of HOG-dependent and -independent genes.

نویسندگان

  • J A Márquez
  • A Pascual-Ahuir
  • M Proft
  • R Serrano
چکیده

The response of yeast to osmotic stress has been proposed to rely on the HOG-MAP kinase signalling pathway and on transcriptional activation mediated by STRE promoter elements. However, the osmotic induction of HAL1, an important determinant of salt tolerance, is HOG independent and occurs through the release of transcriptional repression. We have identified an upstream repressing sequence in HAL1 promoter (URSHAL1) located between -231 and -156. This promoter region was able to repress transcription from a heterologous promoter and to bind proteins in non-stressed cells, but not in salt-treated cells. The repression conferred by URSHAL1 is mediated through the Ssn6-Tup1 protein complex and is abolished in the presence of osmotic stress. The Ssn6-Tup1 co-repressor is also involved in the regulation of HOG-dependent genes such as GPD1, CTT1, ALD2, ENA1 and SIP18, and its deletion can suppress the osmotic sensitivity of hog1 mutants. We propose that the Ssn6-Tup1 repressor complex might be a general component in the regulation of osmostress responses at the transcriptional level of both HOG-dependent and -independent genes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular genetic analysis of the yeast repressor Rfx1/Crt1 reveals a novel two-step regulatory mechanism.

In Saccharomyces cerevisiae, the repressor Crt1 and the global corepressor Ssn6-Tup1 repress the DNA damage-inducible ribonucleotide reductase (RNR) genes. Initiation of DNA damage signals causes the release of Crt1 and Ssn6-Tup1 from the promoter, coactivator recruitment, and derepression of transcription, indicating that Crt1 plays a crucial role in the switch between gene repression and acti...

متن کامل

Mutational analysis of the Tup1 general repressor of yeast.

The Tup1 and Ssn6 proteins of Saccharomyces cerevisiae form a general transcriptional repression complex that regulates the expression of a diverse set of genes including aerobically repressed hypoxic genes, a-mating type genes, glucose repressed genes, and genes controlling cell flocculence. To identify amino acid residues in the Tup1 protein that are required for repression function, we selec...

متن کامل

The Stress Response Factors Yap6, Cin5, Phd1, and Skn7 Direct Targeting of the Conserved Co-Repressor Tup1-Ssn6 in S. cerevisiae

Maintaining the proper expression of the transcriptome during development or in response to a changing environment requires a delicate balance between transcriptional regulators with activating and repressing functions. The budding yeast transcriptional co-repressor Tup1-Ssn6 is a model for studying similar repressor complexes in multicellular eukaryotes. Tup1-Ssn6 does not bind DNA directly, b...

متن کامل

Hog1 kinase converts the Sko1-Cyc8-Tup1 repressor complex into an activator that recruits SAGA and SWI/SNF in response to osmotic stress.

The yeast ATF/CREB repressor Sko1(Acr1) regulates genes that are induced upon hyperosmotic stress by recruiting the Cyc8(Ssn6)-Tup1 corepressor complex to target promoters. During hyperosmotic stress, Hog1 MAP kinase associates with target promoters, phosphorylates Sko1, and converts Sko1 into a transcriptional activator. Unexpectedly, Tup1 remains bound to target promoters during osmotic stres...

متن کامل

Amino acids induce peptide uptake via accelerated degradation of CUP9, the transcriptional repressor of the PTR2 peptide transporter.

Multiple pathways link expression of PTR2, the transporter of di- and tripeptides in the yeast Saccharomyces cerevisiae, to the availability and quality of nitrogen sources. Previous work has shown that induction of PTR2 by extracellular amino acids requires, in particular, SSY1 and PTR3. SSY1 is structurally similar to amino acid transporters but functions as a sensor of amino acids. PTR3 acts...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The EMBO journal

دوره 17 9  شماره 

صفحات  -

تاریخ انتشار 1998